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Abstract
Chessboard separation problems are modifications to classic chessboard problems, such as the N
queens problem, in which obstacles are placed on the chessboard. The N + k queens problem requires
placements of k£ pawns and N + k mutually non-attacking queens on an N-by-N chessboard. Here we
examine centrosymmetric (half-turn symmetric) and doubly centrosymmetric (quarter-turn symmetric)
solutions to the N +k queens problem. We also consider solutions in which the queens and pawns exhibit
different types of symmetry.
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1 Introduction

According to standard chess rules, a queen can move any number of squares in a straight line vertically,
horizontally, or diagonally, as long as no other piece lies in its path. In 1848, Max Bezzel proposed the 8
queens problem, which calls for a placement of eight queens on an 8 x 8 chessboard so that no two queens
“attack” each other (i.e., no queen lies in another queen’s path) [2]. According to [1], in 1869 F. J. E. Lionnet
first discussed the N queens problem, which calls for a placement of N nonattacking queens on an N x N
board.

The N queens problem and several variations appear extensively through the mathematics and computer
science literatures. In mathematics, the problem has been connected to topics such as graph-theoretic
domination, integer programming, and magic squares. In computer science, the problem is an example of a
generalized exact cover problems and is used as a model for backtracking programming techniques (including
the dancing links method popularized by Knuth in [11]), constraint programming, parallel programming,
and neural nets. Collections of references to the N queens problem can be found in the survey article [1]
and an online bibliography [12]. We also refer the interested reader to [9] and [18].

In this paper we consider special solutions to the “IN 4+ k queens problem”, which calls for placing N + k
queens ‘Q’ and k pawns ‘P’ on an NV x N board so that no two queens attack each other. It was conjectured
in [8] and proved in [6] that for each k > 0, there is a number N (k) depending on k such that if N > N(k)
then the N +k& queens problem has at least one solution. In [7] algorithms that count the number of solutions
to the N + k queens problem for various values of NV and k were presented and compared. The first-named
author of this paper has considered symmetric solutions to the N + k queens problem in [5] and showed that
all solutions to the N + k queens problem (where N > 1) are of one of the following three types:

1. Ordinary solutions, which are not symmetric under rotation. Figure 1 is an example of an ordinary
solution.

2. Centrosymmetric solutions, which are symmetric with respect to half-turn rotations but are not sym-
metric under quarter-turn rotations. Figure 2 is an example of a centrosymmetric solution.
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Figure 1: Ordinary solution to the 8+1 queens problem
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Figure 2: Centrosymmetric solution to the 8+2 queens problem
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3. Doubly centrosymmetric solutions, which are symmetric with respect to quarter-turn rotations. Figure
3 is an example of a doubly centrosymmetric solution.

Q

Q

Figure 3: Doubly centrosymmetric solution to the 540 queens problem

Note that Theorem 2 of [5] shows that no solution to the N + k queens problem, except where N = 1, is
symmetric with respect to horizontal, vertical, or diagonal reflection.

In this paper we further examine symmetric solutions to the N 4 k queens problem and present and
compare algorithms that search only for such solutions. We also consider N + k queens problem solutions
for which the queens and pawns exhibit different types of symmetry.

2 Existence results

In this section we present theorems that will narrow the search for centrosymmetric and doubly centrosym-
metric solutions to the N + k queens problem.

2.1 Centrosymmetric

First we observe that for a centrosymmetric N + k queens solution, either the board must be of odd order
or there must be an even number of pawns.

Proposition 2.1 For an N + k queens problem, no centrosymmetric solutions exist for N even and k odd.

Proof. If N is even, the number of pawns in the left half must be equal to that in the right half.
Therefore, the number of pawns must be even. m

Kraitchik [13] observes on page 248 that for a centrosymmetric solution to the N queens problem with
N odd, there must be a queen in the central cell. Observe that if IV is odd and k is even, then for a
centrosymmetric solution of the NV = k queens problem the central square also must be occupied by a queen.
However, we show on an odd order board with an odd number of pawns that it is a pawn which must occupy
the central square. Rows and columns are numbered 0, 1, ..., N — 1 with the upper left square labeled (0, 0).

Proposition 2.2 For an N +k queens problem with N odd and k odd, centrosymmetric solutions must have
a pawn in board square (|[N/2|,|N/2]).

Proof. Since k is odd, at least one pawn (say its location is (¢, j) with 0 < ¢,j < N) must be invariant
under a half-turn rotation. But then (i,j) = (N —1—¢,N—1—j)and so i = j = (N —1)/2. Thus we have
a pawn in the central square (N —1)/2, (N —1)/2). =

2.2 Doubly Centrosymmetric

Kraitchik [13] notes on pages 248-249 that a doubly centrosymmetric N queens solution can occur only when
N is congruent to 0 or 1 modulo 4. We present the analogous observation for NV + k queens solutions.

Proposition 2.3 Let N > 1 and k > 0 be integers for which the N + k queens problem has a doubly
centrosymmetric solution. Then N and k must satisfy one of the following conditions:
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1. N=0 (mod4) and k=0 (mod 4)
2. N=1 (mod4) and k =0 (mod 4)
3. N =3 (mod4) and k =1 (mod 4)

Proof. Since a doubly centrosymmetric solution is invariant under any number of quarter turn rotations,
if such a solution has a piece at square (a,b) (with 0 < a,b < N) then it must also have pieces of the same
type at squares (N —1—a), (N —1—a,N —1—-10), and (N —1 —b,a). Unless (a,b) = (|N/2],|N/2])
and N is odd, the four squares listed above are distinct. So, the number of queens is congruent to either 0
or 1 (mod 4), and the number of pawns is also congruent to either 0 or 1 (mod 4).

The number of pawns in a solution to the N + k queens problem is k, so we must have £k = 0 (mod 4)
or k =1 (mod 4). The number of queens in a solution to the N + k queens problem is N + k, so either
N+k=0(mod4)or N+k=1(mod4). If N is even, clearly N + k =0 (mod 4) and k = 0 (mod 4),
so N =0 (mod 4), and we have condition 1. If N is odd, and the middle square is empty, we have an even
number of pawns and an even number of queens, which leads to a contradiction with the parity of N. If NV
is odd and the middle square has a queen, then N + %k =1 (mod 4) and k = 0 (mod 4), so N =1 (mod 4)
and we have condition 2. If N is odd and the middle square has a pawn, then ¥k =1 (mod 4) and N+ k=0
(mod 4), so N = 3 (mod 4) and we have condition 3. m

There is one further special case to consider.

Proposition 2.4 There are no doubly centrosymmetric solutions to the N + 1 queens problem.

Proof. Suppose we had a doubly centrosymmetric solution to the N 4+ 1 queens problem for some N.
By the proof of Proposition 2.3, we can conclude N is odd and that the pawn is in the central square at
(IN/2],|N/2]). In order to have N + 1 mutually nonattacking queens, the central column must have at
least one queen, say at (a, |[N/2]), with 0 < a < |N/2]. Since the solution is invariant under a half-turn
rotation, there is a queen at (| N/2], N —1 —a). But we now have two queens on the same diagonal with no
pawn between them, which contradicts our assumption that the queens do not attack each other. m

2.3 Symmetry of queens different from that of pawns

We next consider N + k queens solutions where the symmetry of the queens is different from the symme-
try of the pawns. For example, Figure 4 (left) is a 14+4 queens solution where the queens are arranged
centrosymmetrically but the pawns have no symmetry. Figure 4 (right) is a 7+2 queens solution where the
queens are doubly centrosymmetric while the pawns are merely centrosymmetric.

Recall that if & # 1 then there are no N + k queens solutions that are symmetric with respect to a
reflection. If we require only the queens to be symmetric, we find that there are solutions where the queens
are symmetric with respect to vertical or horizontal reflection but the pawns are not symmetric. The smallest
N for which such solutions occur is N = 21; Figure 5 is an example.

However, the following proposition shows that in many cases there is no possibility of reflective symmetry
of the queens.

Proposition 2.5 Given a solution to the N + k queens problem (with N > 1),
1. the queens are not symmetric with respect to reflection across a diagonal,
2. if N is even, the queens are not symmetric with respect to vertical or horizontal reflection, and

3. if N = 2s + 1 and the queens are symmetric with respect to vertical or horizontal reflection, then
k>s+1.

Proof.

1. We repeat the argument from Theorem 2 in [5], noting it does not require the pawns to be symmetric.
Suppose we have an N + k queens solution where the queens are symmetric with respect to the main
diagonal (i.e., from upper left corner to lower right corner). Since the first piece in each row and column
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Figure 4: Left: queens centrosymmetric, pawns not Right: queens doubly centrosymmetric, pawns cen-
trosymmetric

must be a queen, there is no pawn in the upper left corner square. We prove by induction that the
board has no pawns at all: Suppose the upper left r x r squares have no pawns and that there is a
pawn in the 7 + 1 column. There must be a queen above that pawn, say at (¢,r + 1). By the assumed
diagonal symmetry there is a queen at (r+1,¢), which is in the same rising diagonal as (¢, +1). Since
the queens are nonattacking, there must be a pawn between (r + 1,¢) and (¢,r 4+ 1), contradicting the
assumption that the upper left » x r corner had no pawns. Since the upper left r x r corner has no
pawns, the upper (r+1) X (r + 1) corner has no pawns. By induction, the board has no pawns. So we
have a diagonally symmetric N queens solution, which is clearly impossible. (The main diagonal has
at most one queen, and any other queen is, by symmetry, on the same rising diagonal as its symmetric
duplicate.)

2. Let N = 2s and suppose we have a solution where the queens are symmetric with respect to reflection
across the vertical line between the two central columns. Each column must have at least one queen.
By symmetry, the queen in one central column is adjacent to a queen in the other central column,
contradicting the given that the queens are mutually nonattacking.

3. Let N = 2s 4 1 and suppose we have a solution where the queens are symmetric with respect to
reflection across the central column. If a square in the central column does not contain a queen then
the row containing that square must contain at least two queens and therefore at least one pawn. If
the central column had more than s+ 1 queens, then there would be two adjacent queens; if there were
s + 1 queens, the two adjacent columns could not have any queens. Thus, the central column must
have at least N — s = s + 1 squares with no queen. So, the board must have at least s + 1 pawns.

]

On the other hand, it is possible for the pawns to have symmetries that the queens do not, even reflective
symmetries. For example, in Figure 2 the pawns are symmetric with respect to reflection across the main
diagonal, but the queens are not.
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Figure 5: A 21414 queens solution where the queens are symmetric with respect to reflection across the
central row. Note that the pawns are not symmetric.
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2.4 Connections to matrices

Recall that a rook is a chess piece that can move any number of spaces in a straight line vertically or
horizontally as long as it does not go through another piece. We define the N + k rooks problem to be that
of placing N + k nonattacking rooks and k pawns on an N X N chessboard. It is straightforward to see
that k < N(N — 1)/2; however, solutions may only exist if k¥ < [N/2] - ([N/2] — 1). This also provides a
(somewhat large) upper bound for the corresponding queens problem.

Each solution to the N + k rooks (or queens) problem can be converted to a matrix representation by
replacing each empty square with a 0, each rook (or queen) with a 1, and each pawn with a —1. For example
the matrix representation for the solution in Figure 2 is

0O 0 0 1 0 0 0 0
0O 0 0 0 0 0 1 0
0O 0 0 0 1 0 0 0
0o 0 1 0 -1 0 0 1
1 0 0 -1 0 1 0 0
0O 0 0 1 0 0 0 0
0O 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 |

Every such matrix is an alternating sign matriz (ASM) [5], a square matrix consisting of Os, 1s, and —1s
where the sum of the entries in each row and column is 1 and the first and last nonzero entry in each row and
column is a 1. Alternating sign matrices have been extensively studied and have applications to statistical
mechanics — see [3, 4, 16]. ASMs with various symmetries have also been studied [14]. We consider ASMs
in more detail in Section 3.

When we convert a centrosymmetric solution into matrix form we obtain a centrosymmetric matriz.
Centrosymmetric matrices have applications [15] to pattern recognition, antenna theory, mechanical and
electrical systems, and quantum physics.

3 Implementation

Algorithm X is a backtracking algorithm for solving exact cover problems using a data structure that Knuth
calls Dancing Links [11]. Previous work [6, 7] found solutions to the general N + k queens problem by
enumerating all possible configurations of £ pawns on the N x N chessboard, subject to certain constraints,
and for each such configuration using an implementation of Knuth’s Algorithm X to place the queens.
Following [6] and [7], we refer to this algorithm for solving the N + k queens problem as DLX.

DLX was selected based on performance comparisons to a standard backtracking algorithm using array
storage for both the N queens and N + 1 queens problems. The DLX solver was not reevaluated for the work
done in [7], although it was conjectured in [5] that alternating sign matrix solvers might improve performance
results. The conjecture observed that the alternating queen and pawn placement is the same problem solved
by alternating sign matrices. We developed a backtracking solution (in fact, still inspired by [10]) based on
simple arrays that uses the properties of alternating sign matrices. We refer to this algorithm as ASM, and
it dramatically outperforms our DLX implementation as k increases.

3.1 Alternating Sign Matrices (ASM)

Whereas the DLX-based algorithm for IV + &k queens places all of the k pawns before attempting to place any
queens, the ASM algorithm (Figure 6) interleaves the placement of queens and pawns, proceeding row-by-row
from the top of the chessboard (row 0) to the bottom (row N — 1). The basic property used is that every
pawn must necessarily be between two queens, both horizontally and vertically. The recursive, backtracking
function queensAndPawns (b,r,c,p) places queens and pawns on the N x N board b, where there still must
be a queen in row r, starting from column c¢. The function assumes that there are p pawns remaining to be
placed. The initial call to the function is queensAndPawns (b,0,0, k). Figure 7 (left) shows the static search
order that is used by ASM on an 8 x 8 chessboard.
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queensAndPawns (b,r, ¢, p)
if r = N and p =0 then
print (b)
return
for col) «— cto N —1 do
if noQueenAttacking (b, r, col@) then
b[r, colQ] < Queen
if p > 0 then
for colP «+— col@ +1to N —2 do
if lastPieceInColumn (b, colP) = Queen then
b[r, colP] < Pawn
queensAndPawns (b,r, colP +1,p — 1)
b[r, colP] « Blank
queensAndPawns (b, + 1,0, p)
b[r, colQ)] < Blank

Figure 6: ASM algorithm

11213(4|5]|6|7|8 25|26|27|28|29|30|31(32 16|1512| 7|1 | 8 |13|16
9 |10(11|12(13|14|15|16 17|18|19|20(21|22(23|24 13|14|11|6 | 2|9 [14|15
17]18|19(20|21|22|23|24 9 (10{11|12(13|14/15|16 8191(10| 5|3 |10{11|12
25(26(27|28|29|30|31(32 1(2]13[4[5]|6|7|8 1(2(3(4]|4]|5|6

33(34(35(36|37|38|39(40 8|716|5(4(3[2]|1 65414321
41142|43|44|45|46|47|48 16/15|14|13(12|11|10| 9 12|11|10{ 3 | 5|10| 9

49(50(51|52|53(54(55|56 24|23|22|21|20(19|18|17 1514|912 |6 |11]14{13
57(58]59(60(61|62|63|64 32(31(30|29|28|27|26(25 16|13 8 | 1|7 |12|15|16

Figure 7: Left: ASM search order on 8 x 8 board; Middle: adjusted for centrosymmetric solutions; Right:
adjusted for doubly centrosymmetric solutions

3.2 ASM versus DLX

The ASM solver has far better performance than DLX as k increases. For N = 10, £k = 0, ASM performs
35,539 recursive calls, while DLX performs only 12,911. This supports our initial finding of DLX outper-
forming standard array backtracking implementations for N queens. However, using the same value of N
but increasing k to 5 results in 885,560 recursive calls for ASM while the number of recursive calls for DLX
goes to 32,726,723.

P

Figure 8: Bad pawn arrangement for first four rows of 10+4 queens problem

The ASM solver is making fewer recursive calls because it has more information during pawn placement
than DLX does and can then prune poor pawn placement branches sooner than DLX. For an example
illustrating how ASM may prune its search space more effectively, consider the 10+ 4 queens problem, which
has 88 distinct solutions.
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The DLX algorithm is an exact cover solver, therefore the pawn configuration must be defined prior to
placing queens to 'cover’ the resulting chessboard. The DLX algorithm will at some point place its first three
pawns in the configuration shown in Figure 8. The given pawn configuration cannot appear in any solution
because there is no way to place a queen to the left of each of the indicated pawns without at least one pair of
queens having a conflict. For precisely this reason, the ASM algorithm will never consider a partial solution
that has this configuration of pawns. However, DLX does not backtrack at this point. Instead, it places the
remaining fourth pawn, initially, two spaces to the right of the third pawn. Then it begins a search for a
valid placement of queens, which of course fails. When that search completes, DLX then backtracks from
the placement of the fourth pawn, placing it now three spaces to the right of the third pawn. The ensuing
search for a queen placement also fails. Similar doomed searches are repeated dozens of times because of the
configuration of the initial three pawns.

Thus we see that the ASM algorithm affords dramatic search space pruning that is not achieved by the
DLX algorithm.

3.3 Adapting ASM for finding centrosymmetric solutions only

One obvious and effective way to modify ASM so that it enumerates only centrosymmetric solutions is as
follows: whenever the algorithm instantiates a square s, to instantiate with exactly the same value (Queen,
Pawn, or Blank) the square s’ that is reached by a half-turn rotation of s. This cuts in half the depth of
the resulting backtracking search tree. However, in order to obtain maximum pruning from the rotated
instantiations, it is important that are no uninstantiated squares interposed between instantiated squares.
In order to ensure that this is the case, we modified the search order on ASM so that it instantiates the
middle rows of the board first and works out towards the top and bottom edges as the search proceeds.
Figure 7 (middle) shows the search order used on an 8 x 8 board.

3.4 Adapting ASM for finding doubly centrosymmetric solutions only

In this case, whenever the search algorithm instantiates a square, it instantiates the three additional squares
that can be reached through a sequence of quarter-turn rotations. Here again, it is useful to minimize the
number of uninstantiated squares that interpose between instantiated squares. Such squares can be avoided
altogether by using a search order that instantiates the center square(s) first and spirals outwards. However,
such an ordering loses some of the pruning that is afforded to an ordering that proceeds row-by-row (due to
enforcement of the alternating sign properties).

Rather than using an ordering that spirals from the center of the board, we found that it is more efficient
to again use an ordering that proceeds row-by-row, starting from the middle rows and moving towards the
top and bottom edges, although because of the quarter-turn rotations this does leave uninstantiated squares
interposing between instantiated squares during the search. In order to deal with this, special consideration
is given to configurations where two queens share a diagonal and the only interposing squares (other than
Blank squares) are uninstantiated squares. In each such case, the algorithm records a constraint that this
particular diagonal must eventually receive a pawn. (Note that, because of our search ordering and the
symmetries involved in the problem, it is sufficient to record this only for rising diagonals in the upper-left
quadrant of the board.) If, at a later point in the search, the remainder of the diagonal is filled in with
blanks, then the algorithm backtracks. Furthermore, if at any point in the search it is determined that there
are insufficient remaining pawns to meet the remaining diagonal constraints, then the algorithm backtracks.
Figure 7 (right) shows the search order used by this algorithm, again on an 8 x 8 board.

4 Results

Solutions to the N + k queens problem have been obtained using an obviously parallel implementation of
Algorithm X as discussed in [7]. Solutions are presented for the centrosymmetric N + k queens problem,
doubly centrosymmetric N 4+k queens problem, and the centrosymmetric queens, non-centrosymmetric pawns
N + k queens problem. These results were obtained using an Intel T2300, 1.66GHz computer with 3GB of
RAM running Windows XP.
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N\k 0 1 2 3 4 5 6
7 8 4 4 0 0 0 0
8 4 — 4 — 0 - 0
9 16 20 16 4 0 0 0

10 12 — 8 — 0 — 0
11 48 72 124 32 32 36 4
12 72 — 52 — 20 — 0
13 128 200 568 492 564 260 144
14 420 - 1008 - 804 - 184
15 1240 2608 6284 6164 9000 6188 5252
16 2936 - 12932 — 16796 — 10156
17 8024 17040 64776 75640 161632 129612 173124
18 18104 — 129540 — 300212 — 308712
19 44184 100536 581016 833412 2404616 2368516 4481844
20 144140 — 1475728 - 5277880 - 8988784
21 374960 952392 6535584 10907512 | 38493012 | 46514492 | 108353584
22 1250692 — 17632292 — | 90954904 — | 235305576
23 3581240 9969216 80020952 | 151250132 | 645522628 | 911776136

24 11671752 — | 225082516 - -

25 34129328 | 101557176 | 978457836 | 2070351384

26 115718268 — | 2979154076 — —

27 320403024

28 || 1250901440 — - —

29 || 3600075088

Table 1: Centrosymmetric Solutions, 7 < N <29, 0< k<6

4.1 Centrosymmetric

10

The centrosymmetric N 4+ k queens problem identifies solutions to the N + k£ queens problem for which the
queen and pawn locations are invariant under half-turn rotations but not quarter-turn rotations. Table 1 and
Table 2 list the number of solutions to the centrosymmetric N + k£ queens problem. A ’—’ is used to indicate
that no solution can exist for the combination of queens and pawns by one of the results from Section 2.
Empty cells refer to timeouts in which computations were halted after 24 hours.

N\E 7 8 9 10 11 12 13 14| 15| 16 | 17
13 52 8 8 0 0 0 0 0 0 0} 0
14 — 16 — 0 — 0 - 0 - 0] —
15 2364 1744 456 352 60 36 8 4 0 0} 0
16 - 2948 - 560 - 60 - 8 — 0| —
17 105996 99716 45728 32540 11852 7124 2288 | 1144 | 300 | 102 | 32
18 — 170624 — 57260 — 11856 — | 1664 —| 164 | —
19 3356828 4471168 2719996 | 2676960 | 1355144 | 1032560 | 447766
20 - 8608274 — | 5128456 — - - —
21 || 102089260 | 170752652 | 131516964

Table 2: Centrosymmetric Solutions, 13 < N <21, 7< k <17
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4.2 Doubly Centrosymmetric

The doubly centrosymmetric N +k queens problem identifies solutions to the N +k& queens problem for which
the queen and pawn locations are invariant under quarter-turn rotations. Apart from the two well-known
solutions for the 4 + 0 problem, no other solutions exist for N < 12. Tables 3 and 4 give the total number
of solutions of the doubly centrosymmetric N + k queens problem.

Kraitchik [13] shows on pages 248250 that the number of doubly centrosymmetric solutions to the N
queens problem is divisible by 2°. With pawns on the board, we obtain the following generalizations.

Proposition 4.1 Suppose N = 4s+p with p € {0,1,3}, k=4t +r, t > 1, r € {0,1}, and N > Tk. Then
the number of doubly centrosymmetric solutions to the N + k queens problem is divisible by 257 7tT.

Proof. Given a doubly centrosymmetric solution, mark all queens that attack a pawn. (For the diagonals,
only those that have more than one queen need to be considered.) Every pawn causes at most eight queens
to be marked; note that some queens may be marked by several pawns. We conclude that if there is no queen
in the central square or if there is no central square then 8k is an upper bound for the number of marked
queens. If there is a queen in the central square then that queen will also be marked since it is invariant
under reflections, in which case there are at most 8k + 1 marked queens.

If there is no queen in the central square then there are at least N + k — 8k = N — 7k unmarked queens,
with at least (N — 7k)/4 of these in the first quadrant.

By Proposition 2.3, there is no queen in the central squareif p=r =0orifp=3andr=1. If p=r =0,
then (N—7k)/4 = (4s—28t)/4 = s—Tt. If p=3 and r = 1, then (N —7k)/4 = (4s+3—-28t—7)/4 = s—Tt—1.

If there is a queen in the central square, then p = 1 and r = 0. There are at least N+k—8k—1 = N—-Tk—1
unmarked queens with at least (N — 7k —1)/4 = (4s+1— 28t —1)/4 = s — Tt in the first quadrant.

The unmarked queens can all be independently reflected in the main diagonal (the three rotated copies
must be moved accordingly; together, these four queens continue to occupy the same rows, columns and
diagonals), giving rise to a multiple of 2°~7~" inequivalent solutions. We conclude that the number of
solutions is divisible by 2°77t"". m

4.3 Centrosymmetric Queens, Ordinary Pawns

The number of solutions to the problem of placing queens that are centrosymmetric with ordinary pawns
(the constraint that the pawns are neither centrosymmetric nor doubly centrosymmetric) are summarized in
Table 5. Given are both the total number of fundamental solutions, which cannot be transformed into one
another by rotations and/or reflections, and the total number of solutions.

5 Conclusions and Future Work

We presented theoretical and experimental solutions for the centrosymmetric and doubly centrosymmetric
N + k queens problem. We also described solutions to problems in which the queens and pawns exhibit
different types of symmetry.

Applying alternating sign matrix constraints and restricting queen or pawn placement on the chessboard
provides solutions for larger N and k than presented in [7] and this finding provides a framework for future
work. We would like to find sufficient conditions for the existence of centrosymmetric solutions as well as
study solutions where queens and pawns have different symmetries than presented here. Another interesting
problem is to examine symmetric solutions to other chessboard separation problems, such as the domination
separation problems discussed in [6] and, given the constraints of doubly symmetric solutions, perhaps extend
the problem to three dimensions.
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Table 3:

N\k 0 4 5 8 9
4 2 0 - 0 -
12 8 4 - 0 -
13 8 0 - 0 -
15 0 - 32 - 2
16 64 130 - 58 -
17 128 232 - 154 -
19 - - 120 - 258
20 480 1968 - 2058 -
21 704 3148 - 5100 -
23 - - 1328 - 7328
24 3328 27592 - 69360 -
25 3264 41352 - 141478 -
27 - - 33088 - 278712
28 32896 | 520848 — | 2561266 -
29 43776 | 779184 — | 4503792 -
31 - - 624256 — | 8133400
32 || 406784 | 9608608 — | 78866332 -
33 || 667904 | 16982560 — | 157608036 -
35 - — | 8428160 — | 194503760
36 || 5845504 | 199182912 - -
37 || 8650752 | 321908928 - -
39 - — | 119696640 -

40 || 77184000 - —

Doubly Centrosymmetric Solutions, N = 4,12 — 40 (N # 2 (mod 4), k =0,4,5,8,9

N\k 12 13 16 17 20 21 24| 25| 28|29 |32|33]36
15 — 0 - 0 - 0 - 0 - -1 0] —
16 2 — 0 - 0 — 0 - 0 0 -1 0
17 36 — 10 — 2 — 0 — 0 0| -] O
19 — 82 — 6 — 0 — 0 — -1 0] —
20 812 — 170 — 14 - 0 - 0 0 -1 0
21 3258 — 1134 — 264 — 42 — | 12 2| -1 0
23 - 8938 - 4884 — 1346 — | 212 — - 0] —
24 82542 — | 51988 — | 19874 — | 4568 — | 706 0| -1 4
25 216412 — | 177328 — | 87046 — | 29344 — —

27 — | 704964 — | 850870 — | 591342 — — — —
28 || 5930414 — - — - —

Table 4: Doubly Centrosymmetric Solutions, 15 < N < 28 (N # 2 (mod 4)), 12 < k <36 (k= 0,1 (mod 4))

12
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N1 2 3 1 5
120 0 0 0 0
13 [/ 0 0 0 0 0
14 || 0 | 16/2 0 16/2 | 16/2
15 || 0 0| 104/13 248/31

16 || 0 0 0 448 /56

17 || 0 0 0 448 /56

18 || 0 0 0 | 8576/1072

19 || 0 0 | 3592/449

20 || 0 0 0

21 || 0 0 0

Table 5: Centrosymmetric Queens, Ordinary Pawns, 12 < N <21, 1 <k <5
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